Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 103
1.
Environ Res ; 251(Pt 1): 118595, 2024 Mar 09.
Article En | MEDLINE | ID: mdl-38462080

Over the last years, the strategy of employing inevitable organic waste and residue streams to produce valuable and greener materials for a wide range of applications has been proven an efficient and suitable approach. In this research, sulfur-doped porous biochar was produced through a single-step pyrolysis of birch waste tree in the presence of zinc chloride as chemical activator. The sulfur doping process led to a remarkable impact on the biochar structure. Moreover, it was shown that sulfur doping also had an important impact on sodium diclofenac (S-DCF) removal from aqueous solutions due to the introduction of S-functionalities on biochar surface. The adsorption experiments suggested that General and Liu models offered the best fit for the kinetic and equilibrium studies, respectively. The results showed that the kinetic was faster for the S-doped biochar while the maximum adsorption capacity values at 318 K were 564 mg g-1 (non-doped) and 693 mg g-1 (S-doped); highlighting the better affinity of S-doped biochar for the S-DCF molecule compared to non-doped biochar. The thermodynamic parameters (ΔH0, ΔS0, ΔG0) suggested that the S-DCF removal on both adsorbents was spontaneous, favourable, and endothermic.

2.
Int J Biol Macromol ; 261(Pt 1): 129692, 2024 Mar.
Article En | MEDLINE | ID: mdl-38278398

H2O2-modified graphite schist (GS) and sodium alginate (SA) interface was loaded by Fe3O4 nanoparticles (MNPs) to prepare a magnetic biosorbent that was employed in removing Mn(VII) from solutions. The prepared GS/SA/MNPs adsorbent was investigated using a variety of techniques, including elemental mapping, TEM, XPS, FTIR, FESEM, EDX, XRD, XPS, and zeta potential. An experimental study supported by statistical physics calculations was carried out to obtain a new outline of the Mn(VII) uptake mechanism. The classical Freundlich and the statistical physical double-layer models adequately described the Mn(VII) uptake process at pH 3.0 and a temperature of 25-55 °C. The removed number of Mn ions (such as Mn+7 and Mn+2) per GS/SA/MNPs active site ranged from 0.70 to 0.84, indicating a mixed adsorption orientation driven by surface complexation and attraction forces mechanisms. The adsorption energies (∆E) calculated by the double-layer model ranged from 18.79 to 24.94 kJ/mol, suggesting that the interaction between Mn(VII) and GS/SA/MNPs was controlled by physical forces. Increasing the adsorption capacity at saturation (Qsat) from 333.14 to 369.52 mg/g with temperature proposed an endothermic capture process. Thermodynamic functions clarified the viability and spontaneity of Mn(VII) uptake on the GS/SA/MNPs adsorbent.


Graphite , Water Pollutants, Chemical , Graphite/chemistry , Water Pollutants, Chemical/chemistry , Alginates/chemistry , Hydrogen Peroxide , Adsorption , Magnetics , Magnetic Phenomena , Hydrogen-Ion Concentration , Kinetics
3.
Environ Res ; 247: 118219, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38253197

This study presents a novel approach to design and optimize a sodium alginate-based hydrogel (SAH) for efficient adsorption of the model water pollutant methylene blue (MB) dye. Utilizing density functional theory (DFT) calculations, sodium alginate-g-poly (acrylamide-co-itaconic acid) was identified with the lowest adsorption energy (Eads) for MB dye among 14 different clusters. SAHs were prepared using selected monomers and sodium alginate combinations through graft co-polymerization, and swelling studies were conducted to optimize grafting conditions. Advanced characterization techniques, including FTIR, XRD, XPS, SEM, EDS, and TGA, were employed, and the process was optimized using statistical and machine learning tools. Screening tests demonstrated that Eads serves as an effective predicting indicator for adsorption capacity (qe) and MB removal efficiency (RRMB,%), with reasonable agreement between Eads and both responses under given conditions. Process modeling and optimization revealed that 5 mg of selected SAH achieves a maximum qe of 3244 mg g-1 at 84.4% RRMB under pH 8.05, 98.8 min, and MB concentration of 383.3 mg L-1, as identified by the desirability function approach. Moreover, SAH effectively eliminated various contaminants from aqueous solutions, including sulfasalazine (SFZ) and dibenzothiophene (DBT). MB adsorption onto selected SAH was exothermic, spontaneous, and followed the pseudo-first-order and Langmuir-Freundlich isotherm models. The remarkable ability of SAH to adsorb MB is attributed to its well-designed structure predicted through DFT and optimal operational conditions achieved by AI-based parametric optimization. By integrating DFT-based computations and machine-learning tools, this study contributes to the efficient design of adsorbent materials and optimization of adsorption processes, also showcasing the potential of SAH as an efficient adsorbent for the abatement of aqueous pollution.


Environmental Pollutants , Water Pollutants, Chemical , Hydrogels/chemistry , Wastewater , Coloring Agents/chemistry , Alginates/chemistry , Water Pollutants, Chemical/chemistry , Water , Adsorption , Methylene Blue/chemistry , Kinetics , Hydrogen-Ion Concentration
4.
ACS Biomater Sci Eng ; 10(2): 657-676, 2024 Feb 12.
Article En | MEDLINE | ID: mdl-38241520

The fusion of MXene-based materials with microfluidics not only presents a dynamic and promising avenue for innovation but also opens up new possibilities across various scientific and technological domains. This Perspective delves into the intricate synergy between MXenes and microfluidics, underscoring their collective potential in material science, sensing, energy storage, and biomedical research. This intersection of disciplines anticipates future advancements in MXene synthesis and functionalization as well as progress in advanced sensing technologies, energy storage solutions, environmental applications, and biomedical breakthroughs. Crucially, the manufacturing and commercialization of MXene-based microfluidic devices, coupled with interdisciplinary collaborations, stand as pivotal considerations. Envisioning a future where MXenes and microfluidics collaboratively shape our technological landscape, addressing intricate challenges and propelling innovation forward necessitates a thoughtful approach. This viewpoint provides a comprehensive assessment of the current state of the field while outlining future prospects for the integration of MXene-based entities and microfluidics.


Microfluidics , Nitrites , Transition Elements
5.
Molecules ; 28(17)2023 Aug 31.
Article En | MEDLINE | ID: mdl-37687217

This study explored the effects of solution pH, biosorbent dose, contact time, and temperature on the Pb(II) biosorption process of natural and chemically treated leaves of A. compressa K. (Raw-AC and AC-OH, respectively). The results show that the surface characteristics of Raw-AC changed following alkali treatment. FT-IR analysis showed the presence of various functional groups on the surface of the biosorbent, which were binding sites for the Pb(II) biosorption. The nonlinear pseudo-second-order kinetic model was found to be the best fitted to the experimental kinetic data. Adsorption equilibrium data at pH = 2-6, biosorbents dose from 5 to 20 mg/L, and temperature from 300.15 to 333.15 K were adjusted to the Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models. The results show that the adsorption capacity was enhanced with the increase in the solution pH and diminished with the increase in the temperature and biosorbent dose. It was also found that AC-OH is more effective than Raw-AC in removing Pb(II) from aqueous solutions. This was also confirmed using artificial neural networks and genetic algorithms, where it was demonstrated that the improvement was around 57.7%. The nonlinear Langmuir isotherm model was the best fitted, and the maximum adsorption capacities of Raw-AC and AC-OH were 96 mg/g and 170 mg/g, respectively. The removal efficiency of Pb(II) was maintained approximately after three adsorption and desorption cycles using 0.5 M HCl as an eluent. This research delved into the impact of solution pH, biosorbent characteristics, and operational parameters on Pb(II) biosorption, offering valuable insights for engineering education by illustrating the practical application of fundamental chemical and kinetic principles to enhance the design and optimization of sustainable water treatment systems.


Ardisia , Lead , Spectroscopy, Fourier Transform Infrared , Neural Networks, Computer , Plant Leaves , Seizures
6.
Environ Sci Pollut Res Int ; 30(36): 86010-86024, 2023 Aug.
Article En | MEDLINE | ID: mdl-37395882

A grafting of N1-(3-trimethoxysilylpropyl)diethylenetriamine (TMSPDETA) on natural clay was carried out to obtain an organic-inorganic hybrid clay material that was applied as an adsorbent to the uptake of Reactive Blue 19 (RB-19) and Reactive Green 19 (RG-19) dyes from aqueous wastewaters. This research demonstrates the effect of TMSPDETA contents on amino-functionalized clay materials' hydrophobic/hydrophilic behavior. The resultant material was utilized to uptake reactive dyes in aqueous solutions. The clay@TMSPDETA hybrid material was characterized by isotherm of adsorption and desorption of nitrogen, FTIR, elemental analysis, TGA, pHpzc, total acidity, total basicity groups, and hydrophilic balance. The hybrid samples were more hydrophilic than the pristine clay for ratios from 0.1 up to 0.5 due to adding amino groups to the pristine clay. FTIR spectra suggest that TMSPDETA was grafted onto the clay. The hybrid material presents a surface area 2.17-fold (42.7 m2/g) lower than pristine clay (92.7 m2/g). The total volume of pores of hybrid material was 0.0822 cm3/g, and the pristine clay material was 0.127 cm3/g, corresponding to a diminution of the total pore volume (Vtot) of 1.54 times. The kinetic data followed the pseudo-second-order (PSO) model for RB-19 and RG-19 reactive dyes. The equilibrium data were better fitted to the Liu isotherm model, displaying a Qmax as 178.8 and 361.1 mg g-1 for RB-19 and RG-19, respectively, at 20.0 °C. The main mechanism of interactions of the reactive dyes with the hybrid clay is electrostatic interaction. The clay@TMSPDETA has a very good effect on treating synthetic dye-textile wastewater. The removal percentage of simulated wastewater was up to 97.67% and 88.34% using distilled water and plastic industry wastewater as the solvents, respectively. The clay@TMSPDETA-0.1 could be recycled up to 5 cycles of adsorption and desorption of both dyes, attaining recoveries of 98.42% (RB-19) and 98.32% (RG-19) using 0.1 M HCl + 10% ethanol.


Wastewater , Water Pollutants, Chemical , Clay , Coloring Agents/analysis , Water/analysis , Kinetics , Textiles , Adsorption , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration , Thermodynamics
7.
Environ Res ; 236(Pt 1): 116711, 2023 11 01.
Article En | MEDLINE | ID: mdl-37487927

Sustainable water recycling and wastewater reuse are urgent nowadays considering water scarcity and increased water consumption through human activities. In 2015, United Nations Sustainable Development Goal 6 (UN SDG6) highlighted the necessity of recycling wastewater to guarantee water availability for individuals. Currently, wastewater irrigation (WWI) of crops and agricultural land appears essential. The present work overviews the quality of treated wastewater in terms of soil microbial activities, and discusses challenges and benefits of WWI in line with wastewater reuse in agriculture and aquaculture irrigation. Combined conventional-advanced wastewater treatment processes are specifically deliberated, considering the harmful impacts on human health arising from WWI originating from reuse of contaminated water (salts, organic pollutants, toxic metals, and microbial pathogens i.e., viruses and bacteria). The comprehensive literature survey revealed that, in addition to the increased levels of pathogen and microbial threats to human wellbeing, poorly-treated wastewater results in plant and soil contamination with toxic organic/inorganic chemicals, and microbial pathogens. The impact of long-term emerging pollutants like plastic nanoparticles should also be established in further studies, with the development of standardized analytical techniques for such hazardous chemicals. Likewise, the reliable, long-term and extensive judgment on heavy metals threat to human beings's health should be explored in future investigations.


Environmental Pollutants , Wastewater , Humans , Agricultural Irrigation/methods , Agriculture , Soil , Water
8.
Environ Sci Pollut Res Int ; 30(34): 82795-82806, 2023 Jul.
Article En | MEDLINE | ID: mdl-37336851

The Brazil nut shell was used as a precursor material for preparing activated carbon by chemical activation with potassium hydroxide. The obtained material (BNSAC) was characterized, and the adsorptive features of phenol were investigated. The characterization showed that the activated carbon presented several rounded cavities along the surface, with a specific surface area of 332 m2 g-1. Concerning phenol adsorption, it was favored using an adsorbent dosage of 0.75 g L-1 and pH 6. The kinetic investigation revealed that the system approached the equilibrium in around 180 min, and the Elovich model represented the kinetic curves. The Sips model well represented the equilibrium isotherms. In addition, the increase in temperature from 25 to 55 °C favored the phenol adsorption, increasing the maximum adsorption capacity value (qs) from 83 to 99 mg g-1. According to the estimated thermodynamic parameters, the adsorption was spontaneous, favorable, endothermic, and governed by physical interactions. Therefore, the Brazil nut shell proved a good precursor material for preparing efficient activated carbon for phenol removal.


Bertholletia , Water Pollutants, Chemical , Phenol/chemistry , Charcoal/chemistry , Hydrogen-Ion Concentration , Phenols , Thermodynamics , Adsorption , Water , Kinetics , Water Pollutants, Chemical/analysis , Solutions
9.
Molecules ; 28(12)2023 Jun 06.
Article En | MEDLINE | ID: mdl-37375145

This paper proposes an easy and sustainable method to prepare high-sorption capacity biobased adsorbents from wood waste. A biomass wood waste (spruce bark) was employed to fabricate a composite doped with Si and Mg and applied to adsorb an emerging contaminant (Omeprezole) from aqueous solutions, as well as synthetic effluents loaded with several emerging contaminants. The effects of Si and Mg doping on the biobased material's physicochemical properties and adsorptive performance were evaluated. Si and Mg did not influence the specific surface area values but impacted the presence of the higher number of mesopores. The kinetic and equilibrium data presented the best fitness by the Avrami Fractional order (AFO) and Liu isotherm models, respectively. The values of Qmax ranged from 72.70 to 110.2 mg g-1 (BP) and from 107.6 to 249.0 mg g-1 (BTM). The kinetic was faster for Si/Mg-doped carbon adsorbent, possibly due to different chemical features provoked by the doping process. The thermodynamic data showed that the adsorption of OME on biobased adsorbents was spontaneous and favorable at four studied temperatures (283, 293, 298, 303, 308, 313, and 318 K), with the magnitude of the adsorption correspondent to a physical adsorption process (ΔH° < 2 kJ mol-1). The adsorbents were applied to treat synthetic hospital effluents and exhibited a high percentage of removal (up to 62%). The results of this work show that the composite between spruce bark biomass and Si/Mg was an efficient adsorbent for OME removal. Therefore, this study can help open new strategies for developing sustainable and effective adsorbents to tackle water pollution.

10.
Environ Res ; 231(Pt 2): 116133, 2023 08 15.
Article En | MEDLINE | ID: mdl-37209981

Membranes are ubiquitous tools for modern water treatment technology that critically eliminate hazardous materials such as organic, inorganic, heavy metals, and biomedical pollutants. Nowadays, nano-membranes are of particular interest for myriad applications such as water treatment, desalination, ion exchange, ion concentration control, and several kinds of biomedical applications. However, this state-of-the-art technology suffers from some drawbacks, e.g., toxicity and fouling of contaminants, which makes the synthesis of green and sustainable membranes indeed safety-threatening. Typically, sustainability, non-toxicity, performance optimization, and commercialization are concerns centered on manufacturing green synthesized membranes. Thus, critical issues related to toxicity, biosafety, and mechanistic aspects of green-synthesized nano-membranes have to be systematically and comprehensively reviewed and discussed. Herein we evaluate various aspects of green nano-membranes in terms of their synthesis, characterization, recycling, and commercialization aspects. Nanomaterials intended for nano-membrane development are classified in view of their chemistry/synthesis, advantages, and limitations. Indeed, attaining prominent adsorption capacity and selectivity in green-synthesized nano-membranes requires multi-objective optimization of a number of materials and manufacturing parameters. In addition, the efficacy and removal performance of green nano-membranes are analyzed theoretically and experimentally to provide researchers and manufacturers with a comprehensive image of green nano-membrane efficiency under real environmental conditions.


Metals, Heavy , Nanostructures , Water Purification , Technology , Water Purification/methods , Hazardous Substances
11.
Environ Sci Pollut Res Int ; 30(23): 64067-64077, 2023 May.
Article En | MEDLINE | ID: mdl-37060415

In this study, a sustainable and easily prepared hydrochar from wood waste was studied to adsorb and recover the rare earth element cerium (Ce(III)) from an aqueous solution. The results revealed that the hydrochar contains several surface functional groups (e.g., C-O, C = O, OH, COOH), which largely influenced its adsorption capacity. The effect of pH strongly influenced the Ce(III) removal, achieving its maximum removal efficiency at pH 6.0 and very low adsorption capacity under an acidic solution. The hydrochar proved to be highly efficient in Ce(III) adsorption reaching a maximum adsorption capacity of 327.9 mg g-1 at 298 K. The kinetic and equilibrium process were better fitted by the general order and Liu isotherm model, respectively. Possible mechanisms of Ce(III) adsorption on the hydrochar structure could be explained by electrostatic interactions and chelation between surface functional groups and the Ce(III). Furthermore, the hydrochar exhibited an excellent regeneration capacity upon using 1 mol L-1 of sulfuric acid (H2SO4) as eluent, and it was reused for three cycles without losing its adsorption performance. This research proposes a sustainable approach for developing an efficient adsorbent with excellent physicochemical and adsorption properties for Ce(III) removal.


Metals, Rare Earth , Water Pollutants, Chemical , Wood/chemistry , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration , Adsorption , Water , Kinetics
12.
Foods ; 12(8)2023 Apr 19.
Article En | MEDLINE | ID: mdl-37107487

The harmful effects on the environment caused by the indiscriminate use of synthetic plastics and the inadequate management of post-consumer waste have given rise to efforts to redirect this consumption to bio-based economic models. In this sense, using biopolymers to produce materials is a reality for food packaging companies searching for technologies that allow these materials to compete with those from synthetic sources. This review paper focused on the recent trends in multilayer films with the perspective of using biopolymers and natural additives for application in food packaging. Firstly, the recent developments in the area were presented concisely. Then, the main biopolymers used (gelatin, chitosan, zein, polylactic acid) and main methods for multilayer film preparation were discussed, including the layer-by-layer, casting, compression, extrusion, and electrospinning methods. Furthermore, we highlighted the bioactive compounds and how they are inserted in the multilayer systems to form active biopolymeric food packaging. Furthermore, the advantages and drawbacks of multilayer packaging development are also discussed. Finally, the main trends and challenges in using multilayer systems are presented. Therefore, this review aims to bring updated information in an innovative approach to current research on food packaging materials, focusing on sustainable resources such as biopolymers and natural additives. In addition, it proposes viable production routes for improving the market competitiveness of biopolymer materials against synthetic materials.

13.
ACS Omega ; 8(11): 10051-10061, 2023 Mar 21.
Article En | MEDLINE | ID: mdl-36969446

This work synthesized a novel chitosan-loaded MgAl-LDH (LDH = layered double hyroxide) nanocomposite, which was physicochemically characterized, and its performance in As(V) removal and antimicrobial activity was evaluated. Chitosan-loaded MgAl-LDH nanocomposite (CsC@MgAl-LDH) was prepared using cross-linked natural chitosan from shrimp waste and modified by Mg-Al. The main mechanisms predominating the separation of As(V) were elucidated. The characteristic changes confirming MgAl-LDH modification with chitosan were analyzed through Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis-differential thermal analysis, and Brunauer-Emmett-Teller measurements. Porosity and the increased surface area play an important role in arsenic adsorption and microbial activity. Adsorption kinetics follows the general order statistically confirmed by Bayesian Information Criterion differences. To understand the adsorption process, Langmuir, Freundlich, and Liu isotherms were studied at three different temperatures. It was found that Liu's isotherm model was the best-fitted model. CsC@MgAl-LDH showed the maximum adsorption capacity of 69.29 mg g-1 toward arsenic at 60 °C. It was observed that the adsorption capacity of the material rose with the increase in temperature. The spontaneous behavior and endothermic nature of adsorption was confirmed by the thermodynamic parameters study. Minimal change in percentage removal was observed with coexisting ions. The regeneration of material and adsorption-desorption cycles revealed that the adsorbent is economically efficient. The nanocomposite was very effective against Staphylococcus aureus and Bacillus subtilus.

14.
Environ Sci Pollut Res Int ; 30(20): 58684-58696, 2023 Apr.
Article En | MEDLINE | ID: mdl-36997777

Sapelli wood sawdust-derived magnetic activated carbon (SWSMAC) was produced by single-step pyrolysis using KOH and NiCl2 as activating and magnetization agents. SWSMAC was characterized by several techniques (SEM/EDS, N2 adsorption/desorption isotherms, FTIR, XRD, VSM, and pHPZC) and applied in the brilliant blue FCF dye adsorption from an aqueous medium. The obtained SWSMAC was a mesoporous material and showed good textural properties. Metallic nanostructured Ni particles were observed. Also, SWSMAC exhibited ferromagnetic properties. In the adsorption experiments, adequate conditions were an adsorbent dosage of 0.75 g L-1 and a solution pH of 4. The adsorption was fast, and the pseudo-second-order demonstrated greater suitability to the kinetic data. The Sips model fitted the equilibrium data well, and the maximum adsorption capacity predicted by this model was 105.88 mg g-1 (at 55 °C). The thermodynamic study revealed that the adsorption was spontaneous, favorable, and endothermic. Besides, the mechanistic elucidation suggested that electrostatic interactions, hydrogen bonding, π-π interactions, and n-π interactions were involved in the brilliant blue FCF dye adsorption onto SWSMAC. In summary, an advanced adsorbent material was developed from waste by single-step pyrolysis, and this material effectively adsorbs brilliant blue FCF dye.


Charcoal , Water Pollutants, Chemical , Adsorption , Charcoal/chemistry , Wood , Water Pollutants, Chemical/chemistry , Thermodynamics , Kinetics , Magnetic Phenomena , Hydrogen-Ion Concentration , Methylene Blue/chemistry
15.
Molecules ; 28(4)2023 Feb 15.
Article En | MEDLINE | ID: mdl-36838808

Water pollution by dyes has been a major environmental problem to be tackled, and magnetic adsorbents appear as promising alternatives to solve it. Herein, magnetic activated carbons were prepared by the single-step method from Sapelli wood sawdust, properly characterized, and applied as adsorbents for brilliant blue dye removal. In particular, two magnetic activated carbons, MAC1105 and MAC111, were prepared using the proportion of biomass KOH of 1:1 and varying the proportion of NiCl2 of 0.5 and 1. The characterization results demonstrated that the different proportions of NiCl2 mainly influenced the textural characteristics of the adsorbents. An increase in the surface area from 260.0 to 331.5 m2 g-1 and in the total pore volume from 0.075 to 0.095 cm3 g-1 was observed with the weight ratio of NiCl2. Both adsorbents exhibit ferromagnetic properties and the presence of nanostructured Ni particles. The different properties of the materials influenced the adsorption kinetics and equilibrium of brilliant blue dye. MAC111 showed faster kinetics, reaching the equilibrium in around 10 min, while for MAC1105, it took 60 min for the equilibrium to be reached. In addition, based on the Sips isotherm, the maximum adsorption capacity was 98.12 mg g-1 for MAC111, while for MAC1105, it was 60.73 mg g-1. Furthermore, MAC111 presented the potential to be reused in more adsorption cycles than MAC1105, and the use of the adsorbents in the treatment of a simulated effluent exhibited high effectiveness, with removal efficiencies of up to 90%.


Charcoal , Water Pollutants, Chemical , Adsorption , Coloring Agents , Magnetic Phenomena , Kinetics , Methylene Blue , Hydrogen-Ion Concentration
16.
Environ Sci Pollut Res Int ; 30(18): 52498-52513, 2023 Apr.
Article En | MEDLINE | ID: mdl-36840881

The Calophyllum inophyllum species annually produces a large volume of cylindrical fruits, which accumulate on the soil because they do not have nutritional value. This study sought to enable the use of this biomass by producing activated biochar with zinc chloride as an activating agent for further application as an adsorbent in batch and fixed bed columns. Different methodologies were used to characterize the precursor and the pyrolyzed material. Morphological changes were observed with the emergence of new spaces. The carbonaceous material had a surface area of 468 m2 g-1, Dp = 2.7 nm, and VT = 3.155 × 10-1 cm3 g-1. Scientific and isothermal studies of the adsorption of the diuron were conducted at the natural pH of the solution and adsorbent dosage of 0.75 g L-1. The kinetic curves showed a good fit to the Avrami fractional order model, with equilibrium reached after 150 min, regardless of the diuron concentration. The Liu heterogeneous surface model well represented the isothermal curves. By raising the temperature, adsorption was encouraged, and at 318 K, the Liu Qmax was reached at 250.1 mg g-1. Based on the Liu equilibrium constant, the nonlinear van't Hoff equation was employed, and the ΔG° were < 0 from 298 to 328 K; the process was exothermic nature (ΔH0 = -46.40 kJ mol-1). Finally, the carbonaceous adsorbent showed good removal performance (63.45%) compared to a mixture containing different herbicides used to control weeds. The stoichiometric column capacity (qeq) was 13.30 and 16.61 mg g-1 for concentrations of 100 and 200 mg L-1, respectively. The length of the mass transfer zone was 5.326 cm (100 mg L-1) and 4.946 cm (200 mg L-1). This makes employing the leftover fruits of the Calophyllum inophyllum species as biomass for creating highly porous adsorbents a very effective and promising option.


Calophyllum , Water Pollutants, Chemical , Diuron , Water , Biomass , Charcoal/chemistry , Adsorption , Kinetics , Hydrogen-Ion Concentration , Thermodynamics
17.
Environ Sci Pollut Res Int ; 30(14): 40327-40339, 2023 Mar.
Article En | MEDLINE | ID: mdl-36609970

A precise nano-scale biosensor was developed here to detect Hg2+ in aqueous media. Nitrogen-doped carbon nanospheres (NCS) created from the pyrolysis of melamine-formaldehyde resin were characterized by FESEM, XRD, Raman spectra, EDS, PL, UV-vis spectra, and N2 adsorption-desorption, and were used as a highly selective and sensitive probe for detecting Hg2+ in aqueous media. The sensitivity of NCS to Hg2+ was evaluated by photoluminescence intensity fluctuations under fluorescence emission in the vicinity of 390 nm with a λexc of 350 nm. The fluorescence intensity of the NCS probe weakened in the presence of Hg2+ owing to the effective fluorescence quenching by that, which is not corresponding to the special covalent liking between the ligand and the metal. The effects of the fluorescence nanoprobe concentration, pH, and sensing time were monitored to acquire the best conditions for determining Hg2+. Surprisingly, NCS revealed excellent selectivity and sensitivity towards Hg2+ in the samples containing Co2+, Na+, K+, Fe2+, Mn2+, Al3+, Pb2+, Ni2+, Ca2+, Cu2+, Mg2+, Cd2+, Cr3+, Li+, Cs+, and Ba2+. The fluorescence response was linearly proportional to Hg2+ concentration in 0.013-0.046 µM with a limit of detection of 9.58 nM. The in vitro and in vivo toxicological analyses confirmed the completely safe and biocompatible features of NCS, which provides promise for use for water, fruit, vegetable, and/or other forms of natural-connected materials exposed to Hg2+, with no significant toxicity noticed toward different cells/organs/tissues.


Mercury , Nanospheres , Fluorescent Dyes/chemistry , Mercury/analysis , Carbon/chemistry , Cell Line , Water , Spectrometry, Fluorescence
18.
Environ Res ; 220: 115160, 2023 03 01.
Article En | MEDLINE | ID: mdl-36580987

Humic acid (HA) is a complex organic compound made up of small molecules. A variety of raw materials are used to manufacture HA, due to which the structure and composition of HA vary widely. In this study, nitric acid oxidation of two coal samples from Lakhra (Pakistan) was followed by HA extraction using 2.5, 3.0 and 3.5% KOH solutions. The impact of different operating parameters such as; the effect of KOH concentrations, KOH-coal proportion, extraction time and pH range influencing the HA extraction efficiency was optimally investigated. Commercial HA applications possess numerous challenges, including valuable applications and sub-optimal extraction techniques. A significant limitation of conventional experimental methods is that they can only investigate one component at a time. It is necessary to improve the current processing conditions, this can only be achieved by modelling and optimization of the process conditions to meet market demands. A comprehensive evaluation and prediction of HA extraction using Response Surface Methodology (RSM) are also being reported for the first time in this study. The maximum HA extraction efficiency of 89.32% and 87.04% for coal samples 1 and 2 respectively was achieved with the lowest possible pH of 1.09 (coal sample 1) and 1(coal sample 2), which is remarkably lower as compared to those reported in the literature for conventional alkaline extraction process. The model was evaluated for two coal samples through the coefficient of determination (R2), Root Means Square Error (RMSE), and Mean Average Error (MEE). The results of RSM for coal sample 1 (R2 = 0.9795, RMSE = 4.784) and coal sample 2 (R2 = 0.9758, RMSE = 4.907) showed that the model is well suited for HA extraction efficiency predictions. The derived humic acid from lignite coal was analyzed using elemental analysis, UV-Visible spectrophotometry and Fourier-transformed infrared (FTIR) spectroscopy techniques. Scanning Electron Microscopy (SEM) was applied to analyze the morphological modifications of the extracted HA after treatment with 3.5% KOH solution. For agricultural objectives, such as soil enrichment, enhancing plant growth conditions, and creating green energy solutions, this acquired HA can be made bioactive. This study not only establishes a basis for research into the optimized extraction of HA from lignite coal, but it also creates a new avenue for the efficient and clean use of lignite.


Coal , Humic Substances , Humic Substances/analysis , Soil , Organic Chemicals , Spectroscopy, Fourier Transform Infrared
19.
J Environ Manage ; 325(Pt A): 116475, 2023 Jan 01.
Article En | MEDLINE | ID: mdl-36272293

Two flaws in concepts were identified and discussed in the paper ("Removal of Pb(II) from contaminated waters using cellulose sulfate/chitosan aerogel: Equilibrium, kinetics, and thermodynamic studies". J. Environ. Manag. 286, 112167; https://doi.org/10.1016/j.jenvman.2021.112167). In the literature, the Radke-Prausnitz model is expressed in different forms, but some of them are incorrect. The first flaw is related to the nonlinear form of the Radke-Prausnitz model. The nonlinear form of this three parameters model is expressed correctly as [Formula: see text] . The units of two parameters are ARP (L/kg) and BRP [(mol/kg)/(mol/L)ß] by considering qe (mol/kg) and Ce (mol/L). The limitation for its exponent is 0≤ ß ≤ 1. This model is developed by two authors (Radke and Prausnitz). The correct paper (DOI: 10.1021/i160044a003) cited as reference of this model is "Radke, C.J., Prausnitz, J.M., 1972. Adsorption of organic solutes from dilute aqueous solution of activated carbon. Ind. Eng. Chem. 11, 445-451". The second is the misconception about the unit of the Langmuir constant (KL; L/mg). The correct unit of KL is litre per milligram of adsorbate (i.e., Pb ions), not litre per milligram of adsorbent (the cellulose sulfate/chitosan aerogel material as reported by Najaflou and co-workers. They proposed a new equation [KL (L/mg) × m/V (mg/L)] to convert the Langmuir constant and then applied it to calculate the thermodynamic parameters of the adsorption process. The m/V is a solid/liquid ratio (g/L or kg/L). However, this conversion and application are mistakes that were thoroughly discussed in this paper. The correction is KEqo=1γAdsorbate×KLLmol×ComolL, with C° (1 mol/L by definition) being the standard state of solute and γAdsorbate (dimensionless) being the activity coefficient of adsorbate in solution. To avoid unexpected mistakes, the present authors suggest that researchers should have a correct citation (citing the original reference instead of using secondary references) and check the consistency of units (i.e., the constants of adsorption models) carefully.


Chitosan , Water Pollutants, Chemical , Humans , Adsorption , Nonlinear Dynamics , Lead , Hydrogen-Ion Concentration , Kinetics , Solutions , Thermodynamics
20.
Environ Sci Pollut Res Int ; 30(1): 1318-1332, 2023 Jan.
Article En | MEDLINE | ID: mdl-35915307

Irrigation of carbonate-rich agricultural soils with arsenic (As)-contaminated water leads to the accumulation of As in these soils. In this regard, there is an opportunity to adsorb and fix the As in soil and decrease the As transportation to the plants and subsequently the human food chain. So, the present study aimed to investigate the adsorption-desorption characteristics of As in calcareous soils and the potential of As fixation over time. First, to achieve this purpose, 53 soil samples were gathered from the study site and after the laboratory analysis, the soils were categorized into four groups based on their physicochemical properties. Then, four representative samples of these groups were selected, namely soil 1, soil 2, soil 3, and soil 4. Afterward, the As adsorption-desorption was investigated in a lab-scale batch experiment. Next, the effect of age was assessed by incubating the As-adsorbed soils for 60 days, and to study the impact of temperature, the adsorption was performed at four temperature levels (10, 20, 30, and 40 °C). Finally, the isotherm models were fitted to experimental data, and the amount of loosely and tightly held As was quantified. Results revealed that the As adsorption isotherms were L-type, in which As adsorption increased with the increase of As loading. The double-site Langmuir (DSL) estimated that a limited amount of As was adsorbed on high-energy surfaces and a large amount of As was adsorbed on low-energy surfaces. Desorption results showed that a significant amount of As desorbed immediately; however, the desorption significantly decreased with the increase of age, especially at low equilibrium concentrations. By aging the loosely held As transformed into non-labile forms so that in soils 1, 2, 3, and 4, the fraction of As adsorbed on high-energy surfaces increased from 72.5, 93.2, 63.2, and 123 mg/kg to 167, 141, 70.6, and 196 mg/kg, respectively, and the fraction of As adsorbed on low-energy surfaces decreased from 397, 256, 202, and 317 mg/kg to 182, 238, 173, and 172 mg/kg, respectively (after aging for 60 days). Aging proved to be a promising solution for decreasing As transport into the human food chain and could be employed for crops with longer irrigation cycles. ΔHad values were positive and varied from 9.26 to 13.0 kJ/mol, confirming the endothermic nature of adsorption. ΔGad values were negative and varied from - 18.8 to - 22.8 kJ/mol at all temperatures, demonstrating the spontaneous nature of adsorption.


Arsenic , Soil Pollutants , Humans , Infant , Soil/chemistry , Arsenic/analysis , Adsorption , Agriculture , Thermodynamics , Soil Pollutants/analysis
...